Headerbild zu Data Science

Mit Data Science wertvolle Informationen erkennen

Extrahieren Sie mit Data Science versteckte, wertvolle Informationen aus großen Datenmengen, um so künftig datenbasierte Entscheidungen treffen zu können.
Headerbild zum Blogbeitrag Artificial Intelligence

Artificial Intelligence (AI) – aber nur mit Spurhalteassistent

Die Transparenz und Nachvollziehbarkeit von AI ist die größte Herausforderung für die Nutzung von AI. Lesen Sie unseren Blogbeitrag zum Thema AI.

Was ist Data Science?

Data Science wird seit einiger Zeit als die Königsdisziplin bei der Erkennung von wertvollen Informationen in größeren Datenmengen gehandelt. Es verspricht aus Daten beliebiger Struktur – also nicht nur numerischen Werten wie beispielsweise Messwerten und Kennzahlen, die oft als „strukturiert“ bezeichnet werden, sondern auch Texten, Bildern, Videos und sogar Geräuschen („unstrukturierte Daten“) – versteckte, wertvolle Informationen zu extrahieren. 

  • Versteckt, da sich diese Informationen nur sehr schwer / langwierig bzw. aufgrund der beschränkten Fähigkeit des menschlichen Gehirns nicht durch bloßes Betrachten zeigen.
  • Wertvoll, da sich möglicherweise Informationen  verstecken, deren  Kenntnis  aber  auch einen  Mehrwert  stiften bzw. sich daraus ein Handeln ableiten ließe, um einen gewünschten Effekt zu erreichen.

Erfahren Sie alles zu den Vorteilen bei der Nutzung, aus welchen unterschiedlichen Disziplinen sich Data Science zusammensetzt und welche Faktoren dabei eine Rolle spielen. Gemeinsam finden wir mit Data Science den optimalen Weg, wie sie wertvolle Informationen in Ihren Daten finden können. Wir beraten Sie gerne.

4 Gründe für die Nutzung von Data Science

Profitieren Sie von den Vorteilen bei der Nutzung von Data Science:

Datenpotenzial erkennen

Jedes Unternehmen verfügt über Unmengen an Daten. Durch Data Science und die umgebenden Prozesse wird das Potenzial an Erkenntnissen aus diesen Daten sichtbar.

Data-Driven Enterprise

Verknüpfung der Unternehmensdaten, automatische analytische Verarbeitung – gestützt durch Künstliche Intelligenz – ermöglicht das „Data-Driven Enterprise“.

Verlässlichkeit & Transparenz

In jedem Data Science Projekt werden Datenqualität und Datenherkunft sichtbar – die Voraussetzung für nachvollziehbare, transparente Entscheidungen.

Neue Geschäftsmodelle

Die konsequente Nutzung aller Daten des Unternehmens ermöglicht nicht nur Verbesserung bestehender Prozesse, sondern schafft die Basis kompletter neuer Geschäftsmodelle.

Disziplinen von Data Science

Hier lernen Sie die unterschiedlichen Disziplinen kennen, nach denen die notwendigen Daten aus den Vorsystemen extrahiert und für den analytischen Anwendungsfall vorbereitet wurden:

Grafik zu den Disziplinen von Data Science

Künstliche Intelligenz

Der Begriff „Künstliche Intelligenz“ (KI) bzw. „Artificial Intelligence“ (AI) wird heute gern als Überbegriff für Systeme genutzt, die das menschliche Denken nachbilden bzw. simulieren. Dabei spielen Technologien wie maschinelles Lernen (ML) oder Deep Learning mit speziellen Algorithmen eine besondere Rolle.

Im Zusammenhang von Data Science wird KI oft genannt, wenn für bestimmte Anwendungsfälle Systeme für die Entscheidungsunterstützung entwickelt werden. Wie auf dem linken Schaubild ersichtlich, erstreckt sich Data Science nicht ausschließlich auf die Erstellung der KI, sondern vielmehr auf die Kombination aus KI, Informatik und Fachwissen. Informatik umfasst dabei u.a. die Beschaffung der Daten und diese mit dem notwendigen Fachwissen („Domain Knowledge“) in ein für die KI notwendiges Format zu bringen.

Machine Learning

Bei Machine Learning werden „Erfahrungen“, d.h. bereits bekannte Ergebnisse, strukturiert aufbereitet und ein System lernt die Zusammenhänge zwischen Eingangs- und Ausgangsgrößen.

Anhand eines Testdatensets mit ebenfalls bekannten Ergebnissen wird das Lernergebnis (= das erkannte mathematische Modell) überprüft und ggfls. nachgeschärft. Anschließend kann das Modell auf unbekannte Daten angewendet werden und ein Ergebnis mit einer gewissen Güte vorhersagen.

Deep Learning

Deep Learning ist eine Unterdisziplin des Machine Learnings, in der neuronale Netze zum Einsatz kommen. Dabei werden meist große Datenmengen verarbeitet, ohne dass der Mensch beim eigentlichen Lernen noch eingreift (vgl. auch Supervised vs. Unsupervised Learning).

Neurale Netze ahmen die Funktionsweise des menschlichen Gehirns nach: Sie treffen Entscheidungen, hinterfragen diese und lernen ggfls. erneut. Große neuronale Netze benötigen enorme Rechenleistung, die gern durch GPUs bereitgestellt werden, weil diese intern in der Lage sind, Matrizenberechnungen sehr schnell durchzuführen. Deep Learning wird oft zur automatischen Bild- oder Spracherkennung eingesetzt.

Headerbild zu Operationalisierung von Data Science (MLOps)

Operationalisierung von Data Science (MLOps)

Daten und Künstliche Intelligenz (KI) bzw. Artificial Intelligence (AI) können fast jeden Geschäftsprozesses basierend auf Fakten unterstützen. MLOps beschreibt die Integration in den Geschäftsprozess, um den vollen Mehrwert jedes Algorithmus zu nutzen.

Faktoren, die bei Data Science eine Rolle spielen:

  • Vorrat an Daten

    Die zur Verfügung stehende Datenmenge ist enorm gewachsen. In der Produktion senden Sensoren tausende Messwerte pro Sekunde, in der Logistik lassen sich Güter per GPS verfolgen, beim Surfen im Netz hinterlassen potenzielle Käufer bewusst oder unbewusst Spuren, die auf ihr Einkaufsverhalten schließen lassen. 

  • Verfügbarkeit leistungsfähiger Rechenkapazität

    Nie war es einfacher und günstiger, den Datenvorrat mit mathematischen Methoden zu verarbeiten. Durch Leistung nach Bedarf (u. a. in der Cloud) lassen sich Kapazitäten auch kurzfristig steigern, sodass in Summe viele Anwendungsfälle schneller wirtschaftlich werden. Dazu kommen neue, parallel arbeitende Rechnerarchitekturen (u. a. GPUs), welche durch eine native Verarbeitung mathematischer Modelle ungeahnte Kombinationen und Muster erkennen können. 

  • Neue mathematische Methoden

    Durch neue Versionen bekannter Methoden (siehe parallele Verarbeitung und GPU), neue Methoden, die durch die vorherrschende „Sharing-Economy“ schnell weltweit geteilt werden oder durch Methoden der Künstlichen Intelligenz oder des Machine Learning lassen sich heute Lösungen sehr viel einfacher modellieren und lösen. 

  • Qualität und Nachvollziehbarkeit der Daten

    Und trotz bzw. wegen der überragenden Möglichkeiten gilt auch für Data Science, dass die Vorbereitung der Daten aus unterschiedlichen Quellen zeitaufwendig und fehleranfällig ist. Gleichzeitig steigen die Anforderungen an Qualität und Nachvollziehbarkeit der Daten, um Erkenntnisse zu untermauern bzw. auch nachträglich begründen zu können. 

Unsere Leistungen zu Data Science:

Aus der Kombination von Anforderungen und Herausforderungen ergibt sich eine Entscheidungsmatrix für den Einsatz von Data Science, KI oder ML im Unternehmen. Wir finden gemeinsam den richtigen Weg zur optimalen Nutzung der Informationen.

Expertise

Mit unseren Experten decken wir alle notwendigen Qualifikationen für erfolgreiche Data Science Projekte ab. Sei es die Anbindung von Datenquellen, die Aufbereitung, Beurteilung, Modellierung, Quantifizierung oder die Operationalisierung.

Workshops

Gemeinsam erkennen wir Data Science-Potenziale und diskutieren die für Ihr Unternehmen wertvollen Ansätze und deren Machbarkeit. Anschließend bestimmen wir die dafür beste Technologie, um dann die gewonnenen Erkenntnisse für Ihre Geschäftsprozesse zu nutzen.

Für jedes Projekt den richtigen Hersteller

Unsere Experten setzen bei der Umsetzung von Data Science-Projekten auf unterschiedliche Open Source-Werkzeuge wie beispielsweise R, Python, Jupyter, aber auch auf kommerzielle Werkzeuge und Lösungen aus dem Hause IBM und Microsoft.

IBM

IBM bietet seinen Kunden unter der Brand „Watson“ ein umfangreiches Portfolio an Lösungen und Services. IBM unterscheidet in Lösungen, die die Entwicklung und den Betrieb von KI Lösungen umfassend unterstützt, vordefinierte KI-Anwendungen für die Analyse von großen Datenmengen, KI-APIs zur Einbettung in Anwendungen und fertige, KI-unterstützte Branchenlösungen. Mit dem „Cloud Pak for Data“ stellt IBM eine technische Plattform für den Betrieb der o. g. Lösungen bereit, ergänzt um Datenintegration, Data Governance, Datenbanken und Analysewerkzeugen.

Logo Microsoft

Microsoft

Microsoft hat vor allem in seiner Azure Plattform in den letzten Jahren massiv in AI investiert und bietet ein robustes, umfangreiches Framework für die Entwicklung von AI-Lösungen in vielen Bereichen. Fertige Dienste, spezielle Infrastruktur und Tools stellen umfangreiche Funktionen bereit und erleichtern die Bereitstellung von AI-Anwendungen massiv.

Nehmen Sie jetzt Kontakt zu uns auf!

Gerne beraten wir Sie in einem unverbindlichen Gespräch und zeigen Ihnen, wie Sie von Data Science profitieren können. Hinterlassen Sie einfach Ihre Kontaktdaten und wir melden uns dann schnellstmöglich bei Ihnen.

* Pflichtfelder

Wir verwenden die von Ihnen an uns gesendeten Angaben nur, um auf Ihren Wunsch hin mit Ihnen Kontakt im Zusammenhang mit Ihrer Anfrage aufzunehmen. Alle weiteren Informationen können Sie unseren Datenschutzhinweisen entnehmen.

Bitte Captcha lösen!

captcha image
Frankfurt, Austragungsort der IBM Watson Summit 2017
Event 04.07.17

Die TIMETOACT GROUP auf dem IBM Watson Summit 2017

Frankfurt – IBM lädt diesen Herbst erstmalig zum Watson Summit an den Main. Treffen Sie unsere Experten am TIMETOACT GROUP Stand und tauschen Sie sich über die neusten Trends rund um Watson und dessen Integration in Ihre Projekte aus.

Zur Instandhaltung Website
Presse 27.03.18

Fachbeitrag: "Qualität präzise vorhersagen"

X-INTEGRATE beschreibt in einem Fachbeitrag des Magazins “Instandhaltung”, wie sich mit seinem auf IBM-SPSS- Modeler basierenden Scoring-Modell Vorhersagen zur Qualität der Bauteile eines Automobilzulieferers treffen lassen.

Interessiertes Publikum sinnbildlich für IBM Think 2019
Event 06.11.18

X-INTEGRATE auf der IBM THINK 2019

Freuen Sie sich außerdem auf zwei spannende Sessions mit IT-Manager und Geschäftsführer der X-INTEGRATE Software & Consulting GmbH Wolfgang Schmidt zu innovativen Business-Integrationstechnologien.

Headerbild für Edge Computing
Kompetenz 13.07.22

Edge Computing

Mit Edge Computing können Sie Daten dezentral, direkt am Ort ihrer Entstehung, analysieren und auswerten – und zwar nahezu in Echtzeit.

Schulung

Schulungen zu Machine Learning

Wir bieten zahlreiche Schulungen und Trainings rund um Machine Learning an. Je nach Fortschritt erreichen Sie damit verschiedene Level – Basic, Intermediate und Advanced.

Data Science & Advanced Analytics
Kompetenz 03.09.20

Data Science, AI & Advanced Analytics

Data Science & Advanced Analytics umfasst ein breites Spektrum von Werkzeugen, die Geschäftsabläufe untersuchen und helfen können, Änderungen und Verbesserungen herbeizuführen.

Wissen

Der Cloud vorgelagert: Edge Computing für Datenanalysen

Sicherheitsbedenken und Performance-Engpässe gestalten die Verarbeitung und Analyse von Daten in der Cloud zunehmend schwierig. So spricht einiges für eine Zwischenschicht: den Edge.

Zu Computerwoche Website
Presse 25.02.19

Fachbeitrag: Mit IoT Maschinenstraßen überwachen

Maschinen mit IoT zu überwachen gehört heute zum guten Ton. Doch echten Mehrwert bietet erst ein Konsolidierung der Daten, um etwa komplette Fertigungsstraßen zu überwachen. Wolfgang Schmidt, Geschäftsführer der X-INTEGRATE, beschreibt in der Computerwoche die Möglichkeiten für die Industrie.

Wissen

Deep Learning: Ein Beispiel aus dem öffentlichen Dienst

Automatische Bilderkennung hat das Potenzial, Wasserwirtschaftsverbände spürbar zu entlasten – und so beim Hochwasserschutz zu unterstützen. Ein Fallbeispiel.

Fachbeitrag "KI als Wegbegleiter in der Fertigung" im Handbuch KI
Presse 02.12.19

Fachbeitrag: KI als Wegbegleiter einer flexiblen Fertigung

Produktionsmittel und Bauteile untereinander vernetzen ist eine gängige Definition von Industrie 4.0. Im Artikel im Handbuch KI spricht X-INTEGRATE Geschäftsführer Wolfgang Schmidt über den gezielten Einsatz von Predictive Maintenance.

Anonyme Referenz
Referenz

Produkt-Echtzeitanalyse bei Maschinenbauunternehmen

Ein deutsches Maschninenbauunternehmen ermöglicht mit Hilfe von X-INTEGRATE und Industrie 4.0 Technologie ihren Kunden, den Status jedes Geräts visuell und in Echtzeit zu überwachen und auf dieser Basis Arbeitsabläufe zu steuern.

Predictive Scoring Solution
Lösung

Predictive Scoring Solution

X-INTEGRATE bietet ein Predictive Analytics-Verfahren, mit dem es möglich ist, durch Sensoren an den Maschinen innerhalb der Fertigungsstraßen nicht nur die Qualität der gefertigten Bauteile, sondern auch den Zustand der Werkzeuge innerhalb der Produktionsmaschinen, kontinuierlich zu kontrollieren.

Zur wissensmanagement Website
Presse 27.10.17

Fachbeitrag "Kognitive Technologien in Planungsprozessen"

Wolfgang Schmidt, Geschäftsführer der X-INTEGRATE, beschreibt in einem Artikel in der Novemberausgabe des “Wissensmanagement” den Einsatz von kognitiven Systemen und die daraus resultierenden Möglichkeiten.

Hannover Messe 2018 - Nachberichterstattung
Wissen

Hannover Messe 2018 - Nachberichterstattung

Die Hannover Messe ist mit über 200.000 Besuchern die Weltleitmesse für sämtliche Industriebereiche und ein Muss für Entscheider aus dem industriellen Umfeld. Auch X-INTEGRATE war dabei und berichtet über das Event.

Felss Logo
Referenz

Mit Predictive Analytics die Produktqualität vorhersagen

Die Felss Systems GmbH setzt auf ein eigens entwickeltes Predictive Analytics-Verfahren von X-INTEGRATE. Mit vorausschauendem Scoring und Automatisierung wird die Effizienz der Industriemaschinen erheblich erhöht.

Zur Industrieanzeiger Website
Presse 19.06.19

Fachbeitrag: Software hilft, Qualität vorherzusagen

Der Automobilzulieferer Felss Systems setzt ein Softwaresystem von X-Integrate ein, mit dem er Wartungsintervalle in der Produktion nun genau vorhersagen kann. Mehr dazu in unserem Artikel im Industrieanzeiger.

Weiterleitung zu Der Betriebsleiter
Presse 08.08.19

Fachbeitrag: Vorausschauend analysieren

Ein auf Kaltumformtechnik für die Automobilindustrie spezialisierter Maschinenbau hat seine Maschinen mit einer Software für vorausschauendes Scoring und Automatisierung ausgestattet. Erfahren Sie mehr in unserem Fachbeitrag in "Der Betriebsleiter".

Presse 18.01.21

Fachbeitrag: Esperanto für Maschinen gesucht

In Fertigungsbetrieben stehen Maschinen unterschiedlichsten Baujahres und unterschiedlichster Ausstattung. Hinzu kommen verschiedene IT-Systeme, Plattformen und Datenquellen. Um diese Informationen zur Optimierung der Produktion und für Predictive Maintenance zu nutzen, sind einheitliche Datenmodelle nötig.

Weiterleitung zu Big Data Insider
Presse 06.09.17

Punktlandung bei der Wartung mit Predictive Analytics

Am 6. September 2017 erschien der Kommentar “Punktlandung bei der Wartung mit Predictive Analytics” von Maximilian Lorse, Optimization & SCM Engineer bei der X-INTEGRATE im Onlinemagazin “BigData-Insider“.

Wissen

Wie verarbeite ich 13 Millionen Nachrichten pro Sekunde?

Welche neuen Potentiale könnten Sie heben, wenn Ihre Unternehmensanwendung mit hundertausenden von mobilen Endgeräten je Sekunde kommunizieren könnte? Einige Möglichkeiten das zu realisieren wurden auf der diesjährigen IBM Impact Konferenz vorgestellt und diskutiert.