Tafel mit mathematischen Formeln

Formeln gewinnbringend anwenden

Wissensbeitrag

"Mathematik? Das ist doch das mit den Formeln, die man auswendig lernen muss. Und die Formeln? Die versteht doch sowieso keiner und praktischen Nutzen bringen sie auch nicht. Mathematiker arbeiten doch nur theoretisch, das hat doch dann nichts mit der Realität zu tun.“

So oder so ähnlich lauten viele Vorurteile, die bezüglich der Mathematik noch fest in unseren Köpfen verankert sind. Ich möchte Ihnen heute zeigen, dass Formeln keineswegs nur theoretischen Wert haben. Besonders in der Optimierung sind sie unerlässlich – und im Grunde auch ganz einfach und anschaulich zu beschreiben (wenn man sich ein wenig auf die Schreibweise einlässt).

Eine Formel für alle Anwendungen?

Gleichgewicht zwischen Zeit, Kosten und Qualität

Sicherlich werden viele von Ihnen stutzen, wenn ich behaupte, dass diese kurze Formel einem Großteil der mathematischen Optimierungsprobleme entspricht. Unabhängig vom fachlichen Einsatzgebiet. Dabei zeigt diese Formel tatsächlich ganz allgemein, wie lineare Optimierungsmodelle aussehen – und eine Vielzahl an Einsatzszenarien lassen sich eben durch lineare Modelle abbilden. Es lohnt sich daher, sich diese Formel einmal genauer anzusehen.

Was suchen wir?

Wir beginnen ganz links: „max“ gibt uns direkt das Ziel an, das wir erreichen wollen: Maximierung. Nehmen wir daher exemplarisch an, dass wir mit Hilfe der linearen Optimierung den Gewinn unseres Unternehmens maximieren wollen.

Wenn unser Unternehmen Fahrzeuge herstellt, suchen wir dazu die Anzahl der Fahrzeuge, die uns unter Berücksichtigung der gegebenen Ressourcen den größtmöglichen Gewinn bescheren. Die Anzahl aller einzelnen Fahrzeuge je Fahrzeugtyp fassen wir in einem sogenannten Vektor zusammen, der nichts anderes darstellt als eine Sammlung von zusammengehörenden Zahlen. Diese Sammlung nennen wir „x“. Was wir genau suchen und wie viele Lösungen wir benötigen, ist hinter dem Element-Symbol beschrieben: Das Zeichen, das wir ein großes „R“ aussieht, sagt uns, dass wir Zahlen suchen. Das „n“ wiederum steht als Variable dafür, wie viele Zahlen es sind.

Wie suchen wir?

Nun müssen wir unterscheiden zwischen dem, was wir suchen und dem, was wir erreichen wollen: Schließlich wollen wir nicht die Anzahl der Fahrzeuge maximieren, sondern den Gewinn. Wir definieren diesen ganz einfach als die Anzahl der (verkauften) Fahrzeuge multipliziert mit dem jeweiligen Gewinn für das betrachtete Fahrzeug. Nichts anderes besagt der Ausdruck c * x. Das c steht dabei für den Gewinn der einzelnen Fahrzeuge, also für den Verkaufspreis abzüglich der Produktionskosten.

Das „T“ der Formel können wir an dieser Stelle vernachlässigen. Es hat nur den Zweck, dass der Ausdruck mathematisch in der richtigen Schreibweise dargestellt wird und ist für den fachlichen Kontext irrelevant.

Was müssen wir noch beachten?

Bereits jetzt könnten wir eine Lösung finden, das Problem ist nur: Sie lautet „unendlich“. Denn wenn wir den Ausdruck so, wie ich ihn bisher erläutert habe, maximieren, bekommen wir als Ergebnis: Je mehr wir produzieren, desto höher ist der Gewinn, also stellen wir so viele Fahrzeuge wie möglich her. Doch da holt uns natürlich die Realität wieder ein: Die Produktionskapazität ist natürlich durch diverse Faktoren begrenzt, wie Arbeitszeit, Material, Maschinen, etc. Genau diese Aspekte sehen wir im letzten Teil dieser Formel.

In A sind sämtliche Produktionsfaktoren gesammelt, die es zu beachten gilt, beispielweise die Materialmenge pro Fahrzeug, die Arbeitszeit pro Fahrzeug etc. Mit A*x berechnen wir also die benötigten Ressourcen. Wie die Begrenzung jeder Ressource aussieht, wird im Vektor b zusammengefasst. Somit ergibt sich: Die Menge der benötigten Ressourcen darf b nicht überschreiten.

Die letzte Bedingung ist ebenso logisch: Die Anzahl jedes Fahrzeugtyps darf nicht kleiner als 0 sein. Klar, denn wir können schließlich keine negative Anzahl an Fahrzeugen produzieren.

Fazit

Wie Sie sehen, ist die Formel gar nicht so kompliziert, wie sie auf den ersten Blick erscheint. Sie lässt sich analog zur Fahrzeugproduktion auf viele weitere Bereiche übertragen. Wie jetzt die Variablen x, c, A und b gewählt werden, muss dabei stets gut durchdacht sein und ist von Fall zu Fall verschieden. Gerade die Variablen A und b erfordern eine saubere Modellierung, damit das Problem ist möglichst kurzer Zeit lösbar bleibt. Genau dabei und selbstverständlich auch bei der Umsetzung helfen wir Ihnen gerne, sprechen Sie uns einfach an!

Bestimmung eines Standortes
Wissen

Schwerpunktanalyse in einem Logistiknetzwerk

Bei der Planung eines neuen Warenlagers oder neuer Fabrik-Standorte steht man vor dem Problem, die Inputdaten in den Griff zu bekommen. IBM ILOG LogicNet Plus XE ist ein Standardtool zur strategischen Planung und Optimierung von Logistiknetzwerken.

Geschäftsoptimierung
Wissen

Dynamische Anpassung an Absatzmärkte

Was tun, damit sich das eigene Produkt von der Konkurrenz abhebt, ohne dafür interne Strukturen aufgeben zu müssen? Was wird benötigt, um keine statische Lösung zu entwickeln, sondern um sich einem stets wandelnden Markt dynamisch anzupassen? Unser Blogartikel klärt auf.

Mathematische Optimierung und Supermärkte
Wissen

Mathematische Optimierung und Supermärkte

Mathematische Optimierung findet in vielen Bereichen Anwendung. So auch zur Standortplanung für eine Supermarktkette. Dieser Blogartikel fasst die Eckpunkte des Projektes zusammen.

Geschäftsoptimierung
Wissen

Dynamische Anpassung an Absatzmärkte - Teil 2

Mathematische Optimierung ist ein valider Lösungsansatz für Zuordnungsprobleme. Der zweite Teil der Blogserie beweist dies mit einem Praxisbeispiel.

Optimierung des Transports
Wissen

Transportoptimierung im Detail: Die Beladeoptimierung

Warum die Routenoptimierung nur einen ersten Schritt darstellt – Die Netzwerkoptimierung und die Transportoptimierung bilden den Grundstein der Logistikoptimierung und sind aus effizienten Logistikketten nicht mehr wegzudenken. Dieser Artikel beleuchtet die Berechnung der Beladeoptimierung.

Tafel mit mathematischen Formeln
Wissen

Wozu dient die mathematische Optimierung?

Der Lösungsansatz „mathematische Optimierung“ ist ein sehr mächtiges Werkzeug, wenn es darum geht, verschiedenste Fragestellungen zu untersuchen und eine bestmögliche Lösung zu finden. Dieser Blogbeitrag untersucht häufige Fragen rund um das Thema.

Optimierung des Transports
Wissen

Überflüssige Leerfahrten binden Zeit und Kapital – Teil 1

Jeder fünfte LKW auf Europas Straßen fährt leer! So lautet das Ergebnis einer Studie der Europäischen Kommission. Wie die Effizienz von Transportwegen mit mathematischer Optimierung gesteigert werden kann, behandelt dieser Blogbeitrag.

Optimierung des Transports
Wissen

Überflüssige Leerfahrten binden Zeit und Kapital – Teil 2

Jeder fünfte LKW auf Europas Straßen fährt leer! So lautet das Ergebnis einer Studie der Europäischen Kommission. Was sind also die technologischen Möglichkeiten, diesen Umstand zu verbessern?

Person arbeitet am Computer
Wissen

Ein Blick hinter die Kulissen der Software-Entwicklung

Die hauseigene X-INTEGRATE Optimierungslösung „X-INTEGRATE Agency Reallocation“ (XAR) bietet Versicherern einen echten Mehrwert bei der Zuordnung von Agenturen zu Kunden.

Verschiedene Werkzeuge wie Hammer, Schraubenzieher, etc. auf einem Boden
Wissen

Standardtool vs. Standardplattform

Genau wie in vielen anderen Bereichen auch, bietet die Welt der Optimierung vielfältige Möglichkeiten, sich einer Fragestellung zu nähern. Doch was ist die bessere Wahl - Standardtool oder Standardplattform?

Wolken zur Visualisierung der Cloud
Wissen

Mathematische Optimierung in der Cloud mit IBM DOcplexcloud

IBM bietet mit DOcplexcloud einen Optimierungsservice in der Cloud an. Dabei werden Opimierungsanfragen an einen Server in der Cloud gesendet. Dieser Service bringt so einige Vorteile mit sich, auf die dieser Blogbeitrag näher eingehen will.

Wissen

Individuelle Java-Anpassungen in Optimierungsprojekten

Die Oberflächenanpassung im IBM-Optimierungstool ILOG DOC (ehemals ILOG ODM Enterprise) mit Hilfe von Java-Code ergibt ein Optimierungsmodell, das schnell für gute Ergebnisse sorgt. Dieser Blogartikel beleuchtet einige Kniffe, die dies möglich machen.

Rechner mit Programmiercode
Wissen

IBM ODM-Services automatisiert testen

Die Relevanz von ausgiebigen Tests ist in der Softwareentwicklung unumstritten. Der heutige Blogartikel befasst sich mit einer Möglichkeit, deployte Regelservices des IBM Operational Decision Managers automatisiert zu testen und diese Tests zu dokumentieren.

Person tippt am Laptop
Wissen

ODM-SOAP-Tests mit Excel

Wenn sich IBM Operational Decision Manager Tests auf ODM beschränken, können diese auch direkt aus Excel heraus durchgeführt werden – ohne den Umweg über SoapUI. Dazu wird lediglich ein bisschen Programmieraufwand mit VBA benötigt.

Eindrücke vom IBM Finance Day 2013
Wissen

Eindrücke vom IBM Finance Day 2013

Wie stellen Banken und Versicherer Ihre Wettbewerbsfähigkeit sicher? Sind Sie für Themen wie zum Beispiel Mobile Business gerüstet? Der IBM Finance Day 2013 konnte hier als Orientierungshilfe dienen. Lesen Sie in diesem Artikel von unseren Erfahrungen.

Anonyme Referenz
Referenz

Erfolgreiches Supply Chain Management

Als Logistiker oder Hersteller von Waren ist das Supply Chain Management ein wichtiger Teil des Geschäfts. Die X-INTEGRATE Optimierungslösung „Supply Chain Optimizer“ (SCO) auf Basis von IBM DOC unterstützt den Kunden bei der Unternehmensplanung.

ILOG Optimization
Technologie

ILOG Optimization

ILOG CPLEX und ILOG CP Optimizer bieten Ihnen die Möglichkeit, in kürzester Zeit verschiedene Simulationen für mögliche Entscheidungen durchzuführen. Dabei ist CPLEX vor allem für lineare Modelle geeignet, während CP Optimizer generelle Constraint-Programming-Modelle löst.

Services für ILOG Supply Chain Applications
Technologie

ILOG Supply Chain Applications

ILOG LogicNet Plus XE, ILOG Transportation Analyst, ILOG Inventory and Production Frequency Analyst und ILOG Plant PowerOps bieten ihnen die Möglichkeit, Situationen aus verschiedensten Bereichen der Supply Chain zu modellieren und zu optimieren.

MAN Logo
Referenz

Dynamische und optimierte Auftragseinplanung

MAN Truck & Bus AG setzt auf einen von X-INTEGRATE mathematisch optimierten Auftragsbestand, um seinen Auftragseinplanungsprozess und die Auftragsoptimierung zu verbessern.

Boston Consulting Group Logo
Referenz

IBM ILOG CPLEX als Ergänzung zu MATLAB

Die X-INTEGRATE besitzt tiefgehendes Wissen in der individuellen Modellerstellung für IBM ILOG CPLEX sowie in der Integration mit anderen Applikationen und Lösungen. Die BCG hat auf diese Expertise zurückgegriffen und in kurzer Zeit MATLAB durch IBM ILOG CPLEX erweitert.