Mathematische Optimierung und Supermärkte

Supermärkte und mathematischer Optimierung

Wissensbeitrag

Seit ich als Entwickler in der mathematischen Optimierung tätig bin, werde ich häufig gefragt, was eigentlich mathematische Optimierung ist und was man damit machen kann. Und ich habe mich seitdem gefragt: Wie kann ich das am besten erklären? Nun, am besten an einem bestehenden Problem aus der Wirtschaft, das für jeden nachvollziehbar ist. Wir hatten kürzlich ein Projekt, in dem wir die Aufgabe hatten, die Standorte von Filialen einer Supermarktkette zu optimieren. Aber was haben diese Standorte mit mathematischer Optimierung zu tun?

Die Standortplanung für Filialen

Bevor eine Filiale eröffnet wird, muss gesichert sein, dass sie auch profitabel sein wird. Dies geschieht während einer Standortplanung. Diese beginnt zum Beispiel damit, dass ein Unternehmen Filialen in einem bestimmten Gebiet (beispielsweise einer Stadt) eröffnen möchte. In der Planung werden anhand von Daten wie der Einwohnerverteilung und der Kaufkraft einzelner Kundengebiete potentiell gute Standorte für die Eröffnung einer Filiale ermittelt. Ein Mitarbeiter in der Planung müsste nun entscheiden, wie viele Filialen und an welchen der möglichen Standorte diese eröffnet werden sollen.

Standortplanung für Filialen

Der Grundgedanke muss dabei sein, möglichst viele potentielle Kunden (bewusst oder unbewusst) alleine durch eine gute Positionierung der eigenen Filialen dazu zu bewegen, dort einzukaufen. Dies ist direkt von der Entfernung zwischen der Filiale und dem Kunden abhängig: Je näher eine Filiale am Kunden ist, desto wahrscheinlicher geht er bei dieser einkaufen. Gleichzeitig sollten möglichst wenige Filialen geöffnet werden, um die Kosten so gering wie möglich zu halten. Es reicht also meist nicht aus, nur gute Standorte für jede Filiale einzeln zu finden, denn in der Gesamtheit können so die eigenen Filialen zu nah beieinander stehen und sich dadurch gegenseitig Kunden wegnehmen. 

Andererseits können die Filialen zu weit voneinander entfernt sein, wodurch Gebiete vernachlässigt werden und so nicht der maximal mögliche Profit abgeschöpft wird. Wie sollte also eine gute und aussagekräftige Planung aussehen (an der man direkt den Nutzen, wie Profit und Kundennähe ablesen kann) und wie kann einen die mathematische Optimierung dabei unterstützen?

Die Filialstandorte mathematisch optimieren

Im Grunde möchte man in einer Standortplanung nicht nur Filialen finden, die einen hohen zu erwarteten Profit generieren und sich damit zufrieden geben, sondern den Profit maximieren. In einer mathematisch optimierten Standortplanung stellt man sich daher die Frage: „Wie sieht eigentlich die bestmögliche Lösung aus, also eine Lösung, die den größten zu erwarteten Profit generiert“? Um das herauszufinden, benutzt man eine automatisierbare Vorgehensweise (beispielsweise mit IBM ILOG CPLEX), um das Problem mit einem Computer lösen zu können. In der Standortplanung kann man sich diese wie einen zusätzlichen Mitarbeiter in der Planung vorstellen:

Bestimmung eines Standortes

Anhand der Eingabedaten (wie der Bevölkerungsverteilung und Kaufkraft der Einwohner) versucht er, in möglichst kurzer Zeit ein gemeinsam agierendes Netz von Filialen zu finden, das den Profit maximiert. Dabei kann er in gleicher Zeit viel mehr verschiedene Lösungen finden und diese vergleichen als bei einer manuellen Planung. Darüber hinaus gibt er nach dem Lösungslauf eine Einschätzung, wie sich die gefundene Lösung zu anderen möglichen Lösungen verhält. Zum Beispiel: „Der Gesamtprofit des gefundenen Netzes ist unter den Voraussetzungen größtmöglich. Es gibt kein Netz, das einen größeren Profit erzielt“. Oder: „Es gibt möglicherweise eine bessere Lösung als die gefundene, die ist aber höchstens 1% besser“.

Die gefundenen Netze können für eine weitere Planung verwendet werden. Die endgültige Standortverteilung wird dabei nicht mit der mathematischen Lösung identisch sein, dient aber als gute Grundlage. Eventuell müssen Standorte im Nachhinein noch wegen örtlicher Gegebenheiten geringfügig verschoben werden oder es ist für ein lokales Gebiet besser mehrere kleinere Filialen zu einer großen zusammenzufassen.

Ihr Feedback

Haben wir Ihr Interesse geweckt? Oder haben Sie im Arbeitsalltag schon mal mit einer Standortplanung zu tun gehabt? Für Fragen oder Feedback zum Standortproblem oder anderen Themen der mathematischen Optimierung kontaktieren Sie uns. Gerne können Sie uns auch am 29.04.2015 zu unserem Treffpunkt Software besuchen, in dem wir auch näher auf das Standortproblem für Filialen eingehen werden.

Tafel mit mathematischen Formeln
Wissen

Wozu dient die mathematische Optimierung?

Der Lösungsansatz „mathematische Optimierung“ ist ein sehr mächtiges Werkzeug, wenn es darum geht, verschiedenste Fragestellungen zu untersuchen und eine bestmögliche Lösung zu finden. Dieser Blogbeitrag untersucht häufige Fragen rund um das Thema.

Wolken zur Visualisierung der Cloud
Wissen

Mathematische Optimierung in der Cloud mit IBM DOcplexcloud

IBM bietet mit DOcplexcloud einen Optimierungsservice in der Cloud an. Dabei werden Opimierungsanfragen an einen Server in der Cloud gesendet. Dieser Service bringt so einige Vorteile mit sich, auf die dieser Blogbeitrag näher eingehen will.

Mathematische Optimierung
Kompetenz 03.09.20

Mathematische Optimierung

Mathematische Optimierung hilft Unternehmen dabei, über den Einsatz begrenzter Ressourcen komplexe Entscheidungen zu fällen und zielgerichtete Kompromisse zu machen.

Zur SCOPE Website
Presse 16.12.19

Fachbeitrag: Auftragsbestand mathematisch optimiert

83.000 Fahrzeuge setzte MAN Truck & Bus 2016 ein. Die hohe Nachfrage nahm der Full-Range-Anbieter zum Anlass, seinen Auftragseinplanungsprozess und die Auftragsoptimierung auf den Prüfstand zu stellen. Die Erfolgsstory im Artikel in der SCOPE.

Verschiedene Werkzeuge wie Hammer, Schraubenzieher, etc. auf einem Boden
Wissen

Standardtool vs. Standardplattform

Genau wie in vielen anderen Bereichen auch, bietet die Welt der Optimierung vielfältige Möglichkeiten, sich einer Fragestellung zu nähern. Doch was ist die bessere Wahl - Standardtool oder Standardplattform?

X-INTEGRATE Standortoptimierung
Lösung

X-INTEGRATE Standort Optimierung

Nahezu jedes größere Unternehmen ist auf eine geeignete Methode angewiesen, Standorte sinnvoll auszuwählen und zu betreiben. Um die besten Standorte zu ermitteln, setzen wir auf mathematische Optimierung.

Optimierungslösungen
Kompetenz 08.09.20

Optimierungslösungen

Viele Geschäftsprobleme und Herausforderungen lassen sich nicht mehr durch Regelwerke und Entscheidungstabellen abbilden. Komplexe Geschäftsprobleme dieser Art können dann allenfalls noch mit Ansätzen der mathematischen Optimierung gelöst oder verbessert werden.

Wissen

Optimierung der Auftragsbearbeitung

Durch eine Optimierung der Auftragsbearbeitung können Unternehmen ihre Ressourcen schonen und ihren Gewinn steigern. Dieser Artikel zeigt, wie man mit SAP APO und IBM ILOG CPLEX beispielsweise Produktionswege optimieren kann.

Optimierung des Transports
Wissen

Transportoptimierung im Detail: Die Beladeoptimierung

Warum die Routenoptimierung nur einen ersten Schritt darstellt – Die Netzwerkoptimierung und die Transportoptimierung bilden den Grundstein der Logistikoptimierung und sind aus effizienten Logistikketten nicht mehr wegzudenken. Dieser Artikel beleuchtet die Berechnung der Beladeoptimierung.

Wissen

IBM ODM Decision Server Insights

Mit dem neuen Tool IBM Decision Server Insights (DSI), basierend auf IBM Operational Decision Manager (ODM), bietet IBM eine leistungsstarke Möglichkeit, große Daten besser zu verwalten und in Echtzeit auszuwerten. Dieser Blogartikel fasst wertvolle Insights zum Thema zusammen.

Geschäftsoptimierung
Wissen

Geschäftsoptimierung mit mathematische Berechnungen

In mathematischen Optimierungsmodellen für Geschäftsprobleme hängt die Performance oft davon ab, ob das zugrunde gelegte Modell linear ist. Der heutige Blogartikel erklärt das Vorgehen.

Headerbild für Wissensbeitrag zu Optimierung und Business Analytics
Kompetenz 22.09.20

Lösungsansätze durch Optimierung

Um im immer globaler werdenden Wettbewerb bestehen zu können, hält der Alltag jedes Unternehmens unzählige Herausforderungen bereit. Optimierung bietet dabei Orientierung und schafft den entscheidenden Vorsprung zur Konkurrenz.

Free Trial Aktion: Wir entwerfen Ihnen 3 Standort-Szenarien gratis
Lösung

Standorte perfekt positionieren

Profitieren Sie von unserer Free Trial Aktion: Wir entwerfen Ihnen 3 Standort-Szenarien gratis!

Anonyme Referenz
Referenz

Erfolgreiches Supply Chain Management

Als Logistiker oder Hersteller von Waren ist das Supply Chain Management ein wichtiger Teil des Geschäfts. Die X-INTEGRATE Optimierungslösung „Supply Chain Optimizer“ (SCO) auf Basis von IBM DOC unterstützt den Kunden bei der Unternehmensplanung.

Services für ILOG Supply Chain Applications
Technologie

ILOG Supply Chain Applications

ILOG LogicNet Plus XE, ILOG Transportation Analyst, ILOG Inventory and Production Frequency Analyst und ILOG Plant PowerOps bieten ihnen die Möglichkeit, Situationen aus verschiedensten Bereichen der Supply Chain zu modellieren und zu optimieren.

Lieferkette optimieren durch bessere Nutzung der Ressourcen
Lösung

Lieferkette optimieren durch bessere Nutzung der Ressourcen

Ein gutes Supply Chain Management muss Produktions- und Warenlagerkapazitäten beachten, den reibungslosen Transport der Produkte und Zulieferungsprodukte bis zum Endkunden gewährleisten und dabei die Transport-, Produktions- und Lagerungskosten minimieren.

Weiterleitung zu Beschaffung Aktuell
Presse 12.04.17

Beschaffung aktuell berichtet über SCO

In der Ausgabe 04/2017 berichtet “Beschaffung aktuell” über unser Tool zur Optimierung der Produktions- und Netzwerkplanung “SCO”.

Zur Industrie Management Website
Presse 25.02.18

Fachbeitrag: "Produktion & Standortwahl optimieren

Im Fachbeitrag des Magazins “Industrie 4.0 Management”, erzählen wir, wie sich Produktion und Standortwahl mithilfe algorithmischer Berechnungen optimieren lassen.

MAN Logo
Presse

"Automobil Industrie" berichtet über Lösung für MAN

Das Magazin “Automobil Industrie” hat die X-INTEGRATE Lösung zur Mathematischen Optimierung des Auftragsbestands bei dem Nutzfahrzeughersteller MAN näher beleuchtet.

Bestimmung eines Standortes
Wissen

Schwerpunktanalyse in einem Logistiknetzwerk

Bei der Planung eines neuen Warenlagers oder neuer Fabrik-Standorte steht man vor dem Problem, die Inputdaten in den Griff zu bekommen. IBM ILOG LogicNet Plus XE ist ein Standardtool zur strategischen Planung und Optimierung von Logistiknetzwerken.